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The Korteweg-de Vries equation : a historical essay 

By JOHN W. MILES 
Institute of Geophysics and Planetary Physics, 

University of California, La Jolla, California 92093 

The Korteweg-de Vries (KdV) equation, usually attributed to Korteweg & de Vries 
( 1895), governs the propagation of weakly dispersive, weakly nonlinear water waves 
and serves as a model equation for any physical system for which the dispersion relation 
for frequency vs. wavenumber is approximated by w / k  = co (1 - /3k2) and nonlinearity 
is weak and quadratic. It first appears explicitiy in de Vries's dissertation (1894), 
although it is implicit in the work of Boussinesq ( 1 8 7 2 ) .  Its  current renaissance stems 
from the Fermi, Pasta & Ulam (1955) problem for a string of nonlinearly coupled 
oscillators, which, through the work of Zabusky & Kruskal and their colleagues, led 
to the discovery of the soliton and the development of inverse-scattering theory by 
Gardner et ul. (1967). Many related evolution equations, each of which represents a 
balance between some form of dispersion (or variation of dispersion in the case of 
wave-packet evolution) and weak nonlinearity in an appropriate reference frame, have 
since been found to  have properties analogous to those of the KdV equation - in 
particular, inverse-scattering solutions that are asymptotically dominated by solitons. 

1. Introduction 
The Korteweg-de Vries (KdV) equation 

Yt + c,{y, + $d-lyy, + +d2yz,,) = 0, Y = Y(X, t ) ,  ( 1 . 1 )  

where x is the horizontal distance from an arbitrary origin, t is the time, y is the free- 
surface displacement from the equilibrium level of an inviscid incompressible fluid of 
quiescent depth d,  and co = (gci)i is the speed of long, infinitesimal gravity waves, is 
usually attributed to Korteweg & de Vries (1896), although i t  appears, in somewhat 
different form, in the work of Boussinesq ( 1 8 7 2 ) .  It may be reduced to the normal 
form 

%+TTr+r lgs  = 0, 7 = r15,7), (1.2) 

through the transformation 

where 
u = 3UP/d3, 

a < d is an amplitude scale, l d is a horizontal length scale, and a = O ( a / d )  is an 
arbitrary constant. Nonlinearity and dispersion are measured by a/d and ( d / l ) 2 ,  
respectively, and U is a measure of their relative significance (Prsell 1953). The 
Boussinesq solitary wave [see ( 2 . 1 3 )  below], for which U = O( 1 )  as a /d  j, 0 ,  represents 
a balance between nonlinearity, which tends to increase, and dispersion, which tends 
to decrease, the speed of a wave relative to the limiting value co. 
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FIGURE 1 .  Citations ( N )  of Korteweg & de Vries (1895) by year (1964-1979). 
Year 

The normalized KdV equation (1.2),  has been described by Kruskal(1978) as ‘argu- 
ably the simplest partial differential equation. . .not covered by classical methods. ’ It 
governs the evolution, in a reference frame moving with the basic wave speed 
( 1 + a ) c 0 ,  of waves in any physical system for which co is the speed of non- 
dispersive waves of infinitesimal amplitude, the dispersion relation for infinitesimal 
waves of wavenumber k is approximated by 

w = c o f c ( l - p k 2 )  (pg12) (1.5) 

(p  = i d 2  for gravity waves), and nonlinearity is weak and quadratic. The sign of 
yrsE must be changed i f p  < 0 ,  as for capillary or certain plasma waves, and a balance 
between nonlinearity and dispersion then is possible only for a < 0. Closely related 
equations, which model other forms of nonlinearity and dispersion, are discussed in 
appendix A. 

The first explicit appearance of the KdV equation is, as far as I have been able to 
determine, in de Vries’s (1894) dissertation, which formed the basis of the much cited 
1895 paper by Korteweg &- de Vries. The principal citations of that paper prior to 
1965 refer to cnoidal waves, however, and the KdV equation is not displayed explicitly 
in such standard references as Lamb (1932), Stoker (1957)) and Wehausen & Laitone 
(1960). Current interest in the KdV equation stems from the facts that i t  can be 
solved exactly, for appropriately restricted initial data, by inverse-scattering theory 
(Cardner et al. 1967, 1974) and that the typical solution is asymptotically dominated 
by a set of solitons - i.e. solitary waves that retain their form after mutual interant’ I, ions. 
The recent growth of this interest may be inferred from Science Citation Index counts 
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of references to the 1895 paper, which are displayed in figure 1 (these counts presum- 
ably are only lower bounds to the total counts in the archival literature, but they do 
provide a reliable measure of the frequency of citation). 

The present essay is devoted primarily to the pre- 1965 history of the KdV equation 
with special reference to the often overlooked contributions of Boussinesq. I have 
not attempted a definitive coverage of the modern era, for which the reader may refer 
to reviews by Jeffrey & Kakutani (1972)) Scott, Chu & McLaughlin (1973), Miura 
(1974,1976), Kruskal(1974,1975), Makhankov (1978)) andMiles (1980), to Whitham’s 
(1974, cha. 17) treatise, and to the seminal film by Zabusky, Kruskal & Deem (1965). 
Nor have I attempted to deal with the experimental confirmation of the predictions 
of the KdV equation, which go back to Russell (1845) and, in the modern era, include 
the work of Zabusky & Galvin (1971) and Hammack & Segur (1974). 

2. Boussinesq’s contributions 
Joseph Valentin Boussinesq (1842-1929) received his doctorate from the Facult6 

des Sciences, Paris in 1867, occupied chairs a t  LilIe from 1873 to 1885 and the Sorbonne 
from 1885 to 1896, and made significant contributions to the theories of hydro- 
dynamics, elasticity, light, and heat (see Cillispie 1970; Rouse & Ince 1957). His name 
is often invoked in the literature of mechanics, but it appears that his papers are less 
often read - perhaps because his style seems ponderous to the modern ear and may 
have seemed so even to contemporary readers.? 

Boussinesq’s work on weakly nonlinear, weakly dispersive wave propagation is 
developed in three papers (1871 a, b, 1872) and in his 1877 monograph. The first two 
papers are subsumed by the third (1 8721, and it is from that paper that the following 
account is abstracted [(2.1) and (2.3)-(2.5) below also are reported in the 1871b 
paper]; an extended quotation from Boussinesq’s (1972) introduction is given in 
appendix B . 

Boussinesq assumes irrotational flow in an incompressible, inviscid fluid, expands 
the velocity potential in powers of the vertical co-ordinate, and neglects higher-order 
terms to obtain the pair of equations 

and 

( 2 . 1 ~ )  

(2.1b) 

for the evolution of the free-surface displacement y and the horizontal velocity u a t  
the bottom of the channel. [Boussinesq’s notation is related to the present notation 
according to h = y, h, = a, H = d, uo = u, and w = c. He, like his contemporaries, 

t I am not alone in my appreciation of Boussinesq’s contributions or of the difficulties of his 
style (see appendix B). Rouse & Ince (1957) conclude their biographical sketch with the statement 
that : 

Boussinesq’s (1877) work not only was astonishingly complete for its time but it continues 
to be used as a basis for present-day analyses of a related nature. No one would read it from 
cover to cover for sheer enjoyment, for. . .much of the analysis now seems needlessly complex. 
But as a reference volume it remains both provocative and reaeonably accurate, and the wealth 
of material which it embodies has by no means been exhausted. 
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uses the same symbols for ordinary and partial differentiation - e.g. dh/dt EZ ah/& 

= yt here. jZmutdx = IZm ut(x’, t )  dx’.] Equation (2.16) and the x derivative of (2.1 a,), 

(2 . l c )  

constitute one form of what are now known as Boussinesq’s equations (plural) and 
describe both right- and left-running waves. Alternative forms may be obtained by 
introducing any of the depth-averaged velocity, the velocity potential at  the bottom, 
or the velocity potential a t  the free surface as the dependent variable’to be paired 
with y [the velocity potential at, and the displacement of, the free surface are canonical 
variables in Hamilton’s sense (Broer 1974; Miles 1977)l. The neglect of the third and 
fourth terms, which represent nonlinearity and dispersion, respectively, in each of 
(2.16) and (2.1 c), yields the linearized, sliallow-water equations, which imply the 
wave equation ytt = cg yZx. 

The elimination of u between (2.1 a )  and (3.1 b )  yields 

which, like (2. I ) ,  describes both right-running and left-running waves. Boussinesq 
invokes the approximation a, + -coax (y is a right-running wave) on the right-hand 
sideof(2.2) toobtain 

(2.3) 

which is now known as Boussinesq’s equation (singular) and which he regards as the 
‘basis for all the following analysis’ in his 1872 paper, even though it admits left- 
running waves that are inconsistent with the approximation a, = -coax (as far as I 
have been able to kletermine, Boussinesq did not use these spurious solutions, but later 
workers occasionally have done so). In fact, the Borissinesq equations (2.16) and (2.1 c) 
or their equivalents have proved to be both more basic and more useful than (2.3). 

Boussinesq’s equation (2.3) may be reduced to the KdV equation (1.1) by factoring 
cia; - 8: and approximating coax - at by 2coa,, which is consistent with the reduction 
of (2.2) to (2 .3 ) ,  and then integrating with respect to x, but Boussinesq does not follow 
this path. Instead, he derives 

Ytt = cg(Y + W’y2 + Qd2yx,)xx, 

c = co (1 + @-1y + +d2y-ly,,) (2.4) 

Y t +  (CY), = 0. (2.6) 

for the speed of a particular elevation of the wave, defined such that 

It is evident that (2.4), in which the terms @-‘y and Qd2y-lyZz represent the contri- 
butions of weak nonlinearity and weak dispersion to c /co ,  is an implicit form of (1.1), 
which follows from the elimination of c between (2.4) and (2.5). But Boussinesq prefers 
to regard y as a frinction of 

(2.6) (T = JXm y(d, t )  dx’ 

and t ,  rather than x and t ,  and obtains the evolution equation 

(2.7) 
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which is equivalent to (1 .1) ;  however, it does not appear to offer any advantages 
vis-&vis (1.1) and is intrinsically more complicated in form. It seems, then, that 
Boussinesq obtained two implicit equivalents of the KdV equation, (2.4) and (2.7), 
but missed the simpler and more important (as it proved to be) form ( 1 . 1  ) of Korteweg 
& de Vries (1895). 

The introduction of v, although disadvantageous for the evolution equation, does 
offer advantages in the constructJion of integral invariants, and Boussinesq obtains 

and 

f m  

E = /o*ydv = Iz: y2dx 
M = loQ (yy: - 3d-3y2) d c  = 1%; (y: - 3d--3y3) dx, (2.10) 

where xo (which may be replaced by -a if appropriate) is defined such that y = 0 
in x c xo; the integrals may be replaced by averages over one wavelength for periodic 
disturbances. He also derives the equation of motion 

(2.11) 

for the centre of mass xl, which implies the fourth invariant (cf. Benjamin & Mahony 
1971) 

P = &XI - {Q  + $(E /d ) }  cot. (2.12) 

The integral invariants Q and E represent mass and energy, respectively, the con- 
servation of which follows from first principles. The invariants M ,  which Boussinesq 
calls the ‘moment of instability’, and P are less obvious, and their discovery by 
Boussinesq has been widely overlooked in the current literature (see, for example, 
Whitham 1965; Miura 1976). 

Boussinesq then goes on to show that the hypothesis of uniform wave speed leads, 
through (2.4), to the solitary wave 

y = asech2{(3a/d3)~(x-c t ) ) ,  c = c,{l+fr(a/d)} (a  (< d) .  (2.13a)b) 

The normalized form of (2.13a), as given by (1.3) with a = 0 therein, is 

7 = 3sech2(C-7). (2.14) 

This hypothesis also yields a negative wave, with sech2 replaced by - cosech2 in (2.13), 
but Boussinesq discards this singular solution as physically unacceptable [although it 
has proved to be significant for the construction of solutions through BBcklund trans- 
formations (Wahlquist & Estabrook 1973)l. He then shows that the solitary wave 
may be derived from the conditional variational problem 6M = 0 with E (and, 
implicitly, &) fixed,t another discovery that has been widely overlooked. 

Boussinesq closes his 1872 paper with a discussion, based on the description of 
nonlinearity and dispersion provided by (2.4) and on the requirement that ill be a 

t It is now known that H = c0d2M/12 is a Hamiltonian for the KdV equation (Ciardner 1971 ; 
Zakharov & Faddeev 1972; Broer 1975; Flavchka & Newell 1975). See also Whitham (1974, 
$16.14) for a rather different variational approach to the KdV equation. 
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minimum for a wave of permanent form, of the evolution of a solitary wave, or a set 
of solitary waves, plus a dispersive tail, from an initial displacement of positive 
volume. He also shows that a solitary wave cannot evolve from an initial displacement 
of negative volume, for which nonlinearity and dispersion cannot achieve the balance 
that characterizes a solitary wave and, instead, lead to the formation of a dispersive 
wave train. His conclusions are in accord with the observations of Russell (1845) and 
Bazin (1865) and anticipate the predictions of inverse-scattering theory (see $ 5 ) .  

3. The Korteweg & de Vries paper 
Diederik Johannes Korteweg (1848-1941) was a student of J . D .  van der Waals 

and received the first doctoral degree of the University of Amsterdam in 1878 for his 
dissertation on the motion of a viscous fluid in an elastic tube, with application to  
arterial blood flow. He occupied the chair of Mathematics and Mechanics a t  the 
University of Amsterdam from 1881 to 1918. His biographical memoir (Beth & Van 
der Woude 1946) does not mention his work on water waves, nor does it cite his 1895 
paper with de Vries. 

Korteweg appears to have believed that the paradox posed by the solitary wave, 
vis-a-vis the prediction of Airy’s shallow-water theory that ‘long waves in a rectang- 
ular canal must necessarily change their form as they advance, becoming steeper in 
front and less steep behind’ (Korteweg & de Vries 1895), had not been adequately 
resolved by Boussinesq (1871a) and Rayleigh (1876), and it presumably was for this 
reason that he suggested the problem of long waves to his student Gustav de Vries. 
Neither Korteweg nor de Vries appears to have read Boussinesq’s 1871b and 1572 
papers. 

Biographical data on Gustav de Vries are difficult to obtain (he is not to be confused 
with the Dutch mathematician H. de Vries), but, it is known (van der Blij 1978) that 
he was a member of the Wiskundig Genootschap (Dutch Mathematical Society) from 
1892, defended his thesis in 1894, subsequently taught at the Gymnasiums in Alkmaar 
and Haarlem, and published two papers on cyclones in the Verhandlingen of the Royal 
Dutch Academy of Arts and Sciences in 1896 and 1897. The 1895 paper of Korteweg 
& de Vries was excerpted and translated from de Vries’s 1894 thesis. 

Korteweg & de Vries, unlike Boussinesq, emphasize at  the outset the advantages of 
working with unidirectional waves : 

First, then, we investigate the deformation of a system of waves of arbitrary shape 
but moving in one direction only, i.e. we consider one of the two systems of waves, 
starting in opposite directions in consequence of any disturbance, after their com- 
plete separation from each other. By adding to the motion of the fluid a uniform 
motion with velocity equal and opposite to the velocity of propagation of the waves, 
we may reduce the surface of such a system to approximate, but not perfect, rest. 

This leads them, following the method used by Rayleigh (‘whose paper has been of 
great influence on our researches’) in his solution for the solitary wave,? to 

(3.1) Y!zl = ( g / W  (Y1 y + P + gYD3yYx )x , 
t Rayleigh’s (1876) derivation of the equivalent of (2.13), which is reproduced by Lamb (1932, 

§ 252), is rather more direct than that of Boussinesq (1872). Rayleigh notes in his Scientific Papers 
(vol. 1, p. 271) that he had been unaware, in 1876, of Boussinesq’s (1871~)  paper and that ‘So far 
as our results are common, the credit of priority belongs of course to M. Boussinesq’. 
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where 
T = t ,  ( 3 . 2 a ,  b, c )  

Y = y -yo, D = d + y o ,  ( 3 . 3 a ,  b )  

X = ct - X, c = (gD)B { 1 - D-l(y1 -yo)>, 

= 1 - 3(PgD2)-lT1, (3.4) 

D is the minimum depth, yo is the minimum free-surface displacement (note that 
y o  = 0, P = y and D = d for a solitary wave; on the other hand, yo < 0 for a periodic 
wave), y 1  is a small (compared with D )  but otherwise arbitrary length, and Tl is the 
surface tension (y E 4, D = 1 ,  y 1  = a, and y = 3u/13 in the notation of Korteweg & 
de Vries). It is consistent with the approximations implicit in ( 3 . 1 )  to approximate 
D by d except in ( g o ) &  = (go?)+ ( 1  + &d-ly0) in ( 3 . 2 ~ )  and to approximate Y by y except 
in the nonlinear term Y2 + y 2 -  2y0y; these changes, together with the neglect of 
surface tension, render ( 3 . 1 )  equivalent to (1.1 ) through the Galilean transformation 
( 3 . 2 ) .  Korteweg & de Vries give special prominence to ( 3 . 1 )  by displaying it as the first 
equation in their introduction and by identifying it as ‘this very important equation, 
to which we shall have frequently to revert in the course of this paper. . . ’. 

After deriving (3 .1) ,  Korteweg & de Vries obtain a solitary-wave solution that 
reduces to that of Boussinesq, ( 2 . 1 3 )  above, if TI = 0 andis negative if D < ( 3 T , / p g ) 4  
( D  < 0-5cm for water). They also obtain the ‘cnoidal wave’ solution [Boussinesq 
(1877, p. 392) refers to the existence of such solutions but does not carry out the 
required integration] 

Y = acn2{(3a/4ymD3)tX~m} ( y  > O ) ,  m = a/ (a+b)  ( 3 . 5 a ,  b )  
and 

( 3 . 5 c )  

where cn is a Jacobi elliptic cosine of squared modulus rn in the notation of Abramowitz 
& Stegun (1964), a = -yo ( yo  < 0 ) ,  b is an arbitrary positive length (a  = h and b k 
in the notation of Korteweg & de Vries), E and K are complete elliptic integrals of the 
second and first kinds, and y1 is implicitly defined by ( 3 . 2  c )  and ( 3 . 5  c ) .  The wave speed 
c is defined, following Stokes, such that the mean (over one wavelength) horizontal 
momentum of the flow is zero in the X, T reference frame. But Korteweg & de Vries, 
in comparing their cnoidal wave with Stokes’s (1849) second-order approximation to 
a gravity wave, overlook the facts that Stokes uses the mean depth d and measures the 
free-surface displacement positive down, in consequence of which the third equation 
on p. 424 of their paper is not, despite their assertion, Stokes’s result in their notation. 
It remains true, nevertheless, that the first three terms in the Fourier expansion of 
their cnoidal wave are equivalent to the first two terms in Stokes’s expansion after 
correctly allowing for differences in notation and reference levels. 

Kortcweg & de Vries also obtain higher-order approximations to both solitary and 
cnoidal waves (cf. Laitone 1960); however, it is difficult to accept their implicit claim 
that these approximations provide a better resolution of the question of whether or 
not the Boussinesq solitary wave is one of permanent form than do the earlier results 
of Boussinesq (1871a) and Rayleigh (1876) or, especially, the qualitative arguments 
of Boussinesq (1872)’ of which they presumably were unaware. [A mathematical proof 
of the existence of the solitary wave was ultimately given by Friedrichs & Hyers 
( 1954) .] 
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In  fine, the primary contributions of Korteweg & de Vries, vis-ci-vis Boussinesq, 
were in working directly with unidirectional waves, the simpler form of their evolution 
equation - viz. t?,e Korteweg-de Vries equation - and their direct solution of that 
equation for both solitary and periodic waves. 

4. Inverse scattering theory 
The renaissance of the KdV equation stems from the Fermi-Pasta-Ulam (FPU) 

problem for a string of nonlinearly coupled oscillators, the continuum limit of which 
is governed by a close counterpart of Boussinesq’s equation (2 .3) .  Fermi et al. (1955) 
considered a string of 64 masses coupled by weakly nonlinear springs as a model of a 
nonlinear, heat-conducting lattice. They had expected that an initial distribution of 
energy in the fundamental mode of this system would spread to the higher modes 
through the nonlinear coupling and hence lead ultimately to equipartition of energy 
among all the modes. Instead, their numerical solutions showed that, although energy 
was transferred to the first few of the lower modes, it was returned to the fundamental 
mode after 2000 cycles (fundamental periods). Recurrence (now called FPU recur- 
rence) was not quite complete, but it was within the accuracy of the computation. 
Subsequent calculations by Tuck & Menzel(l972) and Abe & Abe (1979) have shown 
that recurrence is definitely incomplete and that there is a sequence of periods, 
To < TI < T, < . . ., where To is the fundamental period, for approximate recurrence 
but that  energy is ultimately transferred to more and more of the higher modes, such 
that equipartition is a plausible end state. Zakharov (1974) has shown that this quasi- 
recurrence phenomenon is associated with the near-integrability af the string of 
oscillators regarded as a Hamiltonian system. 

The study of the FPU problem by Kruskal and Zabusky and their colleagues 
led ultimately to the discovery of the soliton (see Kruskal 1978) and to the exact 
solution of the KdV equation for suitably restricted initial data by the inverse- 
scattering algorithm of Gardner et al. (1967, 1974). Several recent reviews of this 
modern ero are available (see last paragraph in S I) ,  and I consider it only briefly in 
the present account. The highlights are (in my view): 

(i) The KdV equation admits an infinite number of integral invariants (RiIiura, 
Gardner & Kruskal 1968), beginning uith those of Boussinesq (see 5 2 ) .  This is closely 
connected with the interpretation of the KdV equation as a completely integrable 
Hamiltonian system (Gardner 1971; Zakharov & Faddeev 1972). 

(ii) The solution of the KdV equation for an initial displacement that is sufficiently 
smooth and vanishes with sufficient rapidity as x --f & CQ 1- may be reduced to the 
solution of a linear integral equation (Gardner et nl. 1967, 1974). Let 

r(590) = ro(5) (-a < 5 < C Q )  (4.1) 
be the initial value of ~ ( 5 ,  T ) ,  the dimensionless variables being defined by (1 .3) ;  b ( k )  
be the reflexion coeficient determined by the solution of the direct scattering problem 

{ ( d / a - ) 2  + k2 f Bro(5))$(5) = 0 ( - 0 < 5 < CQL (4.2) 

$ - ecikt+b(k)eIkt  (tfco); (4.3) 
t This rostriction rules out periodic waves. See Lax (1976) and referenccs given there regarding 

solutions of the KdV equation that are periodic in .T and ‘ almmt periodic’ in time, the simplest of 
which are rnoirtal 1% aves. 
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{ K ~ ,  K ~ ,  . . . , K ~ }  be the discrete spectrum of eigenvalues given by those poles of b ( k )  that 
lie on the positive imaginary axis in the complex k plane (all poles of b must lie on the 
imaginary axis); c,, be the amplitude determined by 

$n N Cnexp(-KnO (ETw), (4.4) 

where $n is the eigenfunction for k = kn, normalized according to 

Then the solution of the initial-value problem posed by (1.2) and (4.1) is given by 

r(S, 7 )  = 12(d/dt;)h'(5, E ;  7 ) .  (4.8) 

(iii) N 2 1 if the initial volumetric displacement is non-negative (& 2 0 ) ,  and the 
asymptotic solution then is dominated by the N solitary waves (or solitons - see 
below) associated with the discrete spectrum: 

N 

n = l  
7 N 12 K : s ~ c ~ ~ { K , E - ~ K ~ ~ ~ + ~ ~ }  (Ttw), (4.9) 

where the constants a,, a,, . . . , a ,  depend implicitly on both the discrete and contin- 
uous spectra. The asymptotic solution also comprises a dispersive wave train, which is 
associated with the continuous spectrum. The amplitude of this wave train is small 
compared with the amplitudes, but the mass and energy may be comparable with 
those, of the solitary waves. 

(iv) These solitary waves - or any set of unidirectional, Boussinesq solitary waves 
of different amplitudes, and hence of different speeds - pass through one another 
without any permanent change of shape and suffer only phase shifts, even though 
nonlinear distortion is quite significant during the mutual interaction(s). This phenom- 
enon was discovered from numerical solutions of the KdV equation by Zabusky & 
Kruskal(1965), who named the corresponding solitary waves solitons; it is beautifully 
displayed in the film by Zabusky et al. (1965) and was analytically confirmed by Lax 
(1968) and Gardner et al. (1967). 

These are capital discoveries, which have since been extended to a wide class of 
evolution equations [see Lax (1968), Zakharov & Shabat (1972), Ablowitz et al. (1973) 
and appendix A below]. It must be emphasized, nevc?rtheless, that exact analytical 
solutions of the Marchenko integral equation appear to  be possible only for initial 
data for which the dispersive wave train is absent and that these solutions can be 
obtained more directly by Hirota's (1971, 1976) algorithm; moreover, rather eficient 
programs for the direct, numerical solution of the KdV equation now exist [see 
Fornberg & Whitham (1978) and the references given by Zabusky (1980)l. It may 
be that more general solutions of the Msrchenko integral equation await discovery, 
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and analytical solutions certainly provide insights that are not attainable through 
numerical solution.s, but it also may be that the major benefits of inverse-scattering 
theory for fluid mechanics have now been realized. 

This work was partially supported by the Physical Oceanography Division, National 
Science Foundation (NSF Grant OCE77-24005) and by a contract with the Office of 
Naval Research. I am indebted to  L. J. P. Broer, J. Korevaar and G. Ooms for bio- 
graphical data on Korteweg and de Vries, to W.K.  Melville, R.M. Miura, D.H. 
Peregrine, and N. J. Zabusky for helpful comments, and to A. C. Vastano for per- 
mission to reproduce the translation in appendix B. 

Appendix A. Related equations 
Modijied l i d  V equations 

The nonlinear term qrE in (1.2) must be replaced by 7 p q 5  if the nonlinearity is of degree 
p + 1. The most important case, other than p = 1, is p = 2, and the resulting equation 
(after replacing 7 by <), 

is known as the modified Korteweg-de Vries (mKdV) equation. Moreover, the sign of 
the nonlinear term may be changed to obtain the non-trivial alternative 

5, + 5"[ + <<E, = 0, (A 1) 

[Note that changing the sign of the nonlinear term in (1.2) yields nothing new, since 
the resulting equation is reduced to (1.2) by changing the sign of 7.1 Equation (A 1) 
admits the solitary-wave solution [cf. (2.14)] 

5 = ~6pSech(pC-p37), (A 3) 

where ,u is a family parameter. This solution represents a balance between weak 
dispersion, as described by (1.5)) and cubic nonlinearity, a balance that is impossible 
for (A 2)) which has no solitary-wave solutions. 

Miura (1968) discovered that the solutions of (A 2) are mapped into solutions of 
(1.2) through the transformation 

7 = - p - J 6 5 5 .  (A 4) 

It should be emphasized, however, that the entire set of those solutions of (A 2) that 
vanish with sufficient rapidity as C-+ rt: co map into a sparse subset of all of those 
solutions of (1.2) that vanish as --f rt: co (Ablowitz & Kruskal 1979). Miura's trans- 
formation (A 4) played a key role in the development of inverse-scattering theory. 

Inverse-scattering theory also may be invoked to solve both the mKdV equation 
(Wadati 1972, 1973) and the generalized KdV equation obtained by adding the term 
- Cy2q, to ( I  .2) ,  where C is a constant that measures cubic n.oizlinearity, which may 
be significant if quadratic linearity is sufficiently weak, as in some internal wave 
problems (Miles 1979). It is not applicabIe to the equation obtained by replacing 
qilf by r )Pq , .  with p > 2 (Miura 1976). 
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B B M  equation 

The dispersion term coyxxz in the KdV equation (1.1) may be replaced by -yzzt 
without altering the order of the approximation. The result, 

Yt + Go ( 1 + gd-ly) yz - g 2 y z z t  = 0, (A 5) 

appears to be due originally to Peregrine (1966), although it is commonly known either 
as the B B M  equation by virtue of an extensive study by Benjamin, Bona & Mahony 
(1972) or as the regularized long-wave equation, the designation proposed by Benjamin 
et al. Its linear counterpart is associated with the dispersion relation 

w = cO k( 1 + &k2d2)-l, (A 6) 

which, in contrast to (1.5), is positive for all k [although consistent with the derivation 
of (A 5 )  only for k2d2 9 1, in which domain it is equivalent to (1.5)]. This may be 
advantageous for numerical work; on the other hand, (A 5) does not admit an infinite 
number of integral invariants and cannot be solved by inverse scattering the0ry.t 
Broer (1975, 1976) has discussed (A 5) and generalizations thereof from the viewpoint 
of Hamiltonian theory. See also Kruskal(l975). 

Perturbed Kd V equations 

The evolution of a weakly dispersive, weakly nonlinear wave in a channel of slowly 
varying breadth and depth, for which the scale of the slow variation must be large 
compared with the length scale 1 of the wave, is governed by an equation of the form 
( 1  . l )  with variable coefficients and an additional term that is proportional to y (Shuto 
1974; Ostrovsky & Pelinovsky 1975), although x and t then are no longer simple 
space and time co-ordinates. Damping may be similarly incorporated (Miles 1976). 
If the resulting perturbation of the KdV equation is small, the solution may be 
obtained by a perturbation of inverse-scattering theory (Karpman & Maslov 1977; 
Kaup & Newel1 1978; Karpman 1979); the details are complicated, and explicit 
results have been obtained only for perturbed solitary waves. 

Benjamin-Ono equation 

Benjamin (1967) and Whitham (1967; 1974, 3 13.14) independently suggested that 
weakly nonlinear waves for which the wave speed is c(k)  in the linear regime are 
governed by 

where K is an inverse length (if y is a displacement). Equation (A 7) provides an exact 
description of dispersion if K = 0. It reduces to the KdV equation (1 .1 )  for weakly 
nonlinear, shallow-water gravity waves if 

t It should be noted that (A 5 )  reduces to (1.2) under the transformation (1.3) if and only if 
O(d*/P) is neglected. Such neglect is, of course, consistent with the derivation of (A 5) for long 
waves but eliminates the putative advantage of (A 5)  for short waves. 
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Benjamin (1967) considered internal waves in a thin, stratified layer embedded in 
an otherwise homogeneous fluid of (in the simplest case) unlimited extent, for which 

c ( k )  = co(1 -ylkl) (A 9) 

and y depends on the density distribution. The substitution of (A 9) into (A 7) yields 
the Benjamin-0no-f equation 

Y t + C , ( l  +KY)Y, = 

wherein the integral is a Cauchy principal value. Benjamin showed that (A 10) admits 
the solitary-wave solution 

wherein 
C = C o ( l  + tK fX) ,  h = 4'7(KU)-1, (A 12a,b) 

a is the amplitude, and y is the streamline displacement at  some reference level. 
Joseph (1977) has generalized (A 10) to obtain the evolution equation for internal 

waves in a stratified layer in a fluid of finite depth D and has obtained the corres- 
ponding solitary-wave solution, which reduces to (A 11) in the limit D t 03 and to the 
equivalent of (2.13) in the limit D J. 0; see also Henyey (1980). Satsuma, Ablowitz & 
Kodama (1979) and Chen, Hirota & Lee (1980) have shown that Joseph's equation, 
and hence also the Benjamin-Ono equation, admits an infinite number of integral 
invariants and an inverse-scattering-theory algorithm. 

y = ah2{(x - C t ) 2  + h2}-1, (A 11) 

Nonlinear Schrodinger equation 

The assumption of the wave packet 

6 = Re{A(x, t)exp [i(w,t - k,x)]>, (A 13) 

where A ( x ,  t )  is a slowly varying, complex amplitude and w, = Q,(k,)  and k, are the 
carrier frequency and wavenumber, and the nonlinear dispersion relation 

w = Q,(k) + a2QR,(k) (A 14) 

leads to the nonlinear Schrodinger equation (Whitham 1974, 3 17.8) 

where SZ; = dQ,/dk is the group velocity. (Note that, in this case, the evolution in a 
reference frame moving with the group velocity represents a balance between weak 
variations of the dispersion.) This equation admits solitary-wave solutions (which 
represent envelope solitons) and may be solved by inverse-scattering theory (Zakharov 
& Shabat 1972). 

Appendix B. Boussinesq's (1872) introduction 
The following quotation from Boussinesq's introduction to his 1872 paper is taken 

from the translation by Vastano & Mungall ( 1976)) who remark that ' [our] translation 
attempts to preserve the sense of the nineteenth century French language without the 

t Equation (A 10) is equivalent to Benjamin's (1.11) after invoking his (A 4) but does not 
appear explicitly in his 1967 paper. It was subsequently derived and explicitly displayed by Ono 
(1975). 
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introduction of modern terminology, and we have thus retained Boussinesq’s some- 
what heavy phraseology ’. 

I propose to  give here an almost complete theory concerning [solitary waves] 
taking for the point of departure of my analysis the characteristic which essentially 
distinguishes them from other undulatory movements of fluids. This characteristic 
consists of the fact that  the horizontal velocities of the fluid parcels are approxi- 
mately equal over the entire extent of the same normal cross section of the canal. 
[This] permits one to obtain [the velocity potential] # in a convergent series con- 
taining no other unknowns than the velocity a t  the different points of the bottom. 
This series, substituted for # in the known formulas of hydrodynamics, furnishes, 
using the depth from the bottom of the different normal cross sections and the 
velocity a t  the different points of the bottom, two equations with partial derivatives 
with respect to time and with respect to  the longitudinal co-ordinate x [(2.1a, b)  
above]. As a first approximation, that  is to say neglecting all terms that are very 
small in comparison with the ratio of the intumescence? height to  the original 
depth, these two equations lead to  the remarkable law of Lagrange. . . that  a11 
intumescenses of small height, positiae or negative, propagate conserving their 
form and with a velocity equal to  the square root of the product of the gravity by 
the original depth. 

This law ceases to be true in a second approximation. Then, except for certain 
particular phenomena, a velocity of propagation common to the whole wave no 
longer holds, and it is expedient to  divide the intumescence, beginning a t  its front, 
into infinitely small parts of constant volume, included between consecutive planes 
normal to  the axis of the canal, and positive or negative according to their height, 
which is the excess of the instantaneous depth at  the points considered over the 
original depth. Separately considering each of these parts, I will show that the 
square of its velocity of propagation is equal, at any given instant, to the product of 
the gravity g by the sum: (1) of the original depth, (2) of one and a half times the 
instantaneous height of the part of the intumescence considered, and (3) of the 
curvature assumed by the free surface, multiplied by the inverse of the same height 
and by one-third the cube of the original depth E(2.4) above]. 

It is particularly interesting to  study the movement of the general center of 
gravity of the wave. . . . [Tlhe height, positive or negative, of the center of gravity 
considered above the initial free surface. . .stays constant throughout the motion: 
It is invariable in that when multiplied by twice the volume of the intumescence 
and by the weight of a unit volume of the liquid, i t  becomes approximately equal 
to the total and constant energy of the wave. . . . 

The total volume of an intumescence and its energy [(2.8) and (2.9) above] are 
not the only two integrals which remain constant during the motion, and which 
thus characterize each intumescence. There is in addition a third, the elements of 
which one obtains by dividing, as previously stated, the intumescence into infinitely 
small parts by normal cross sections, and by multiplying the distance between two 
consecutive sections by the square of the slope that the instantaneous free surface 
makes with the original free surface, then subtracting three times the cube of the 
ratio of the height of the intumescence to  the initial depth [(2.10) above]. I call this 
integral the moment of instability of the wave. . . . 

t Boussinesq’s term for a moving disturbance of the free surface. 
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It is natural to inquire, amongst all the possible forms that can be assumed by. . . 
an  intumescence, if one exists which gives to all parts the same velocity of propaga- 
tion, in such a way that the wave advances without deformation. If there is such a 
form, it is probable that waves will frequently acquire i t  in the initial period of 
motion. . . . I will show now that such a form indeed exists when the intumescence is 
positive and of sufficiently small volume [and that it is], with all the circumstances 
which characterize it, the solitary wave o f  Scott Russell. 

It remains to  explain the frequent formation of this particular species of wave 
and their unique stability. I succeed in demonstrating that a solitary wave is, 
among all the intumescences of equal energy, that for which the integral [ N ]  that 
I have called the moment of instability has its smallest value, and is also the only one 
which makes this integral maximum or minimum. The result is that, if an intumes- 
cence differs little a t  a given instant, with respect to the shape, from a solitary wave 
of the same energy, it will differ little a t  all times: for it cannot deviate notably 
without its moment of instability growing in an appreciable manner, which is 
impossible, since this moment is invariable. The true form of the intumescence will 
thus oscillate continuously about that of a solitary wave, or rather the friction that 
we have neglected, and which has a notable influence at the beginning of the 
propagation, will not delay in cancelling its small variations and in giving to the 
wave a permanent form. . . . And, just as friction can restore certain bodies after 
large excursions to  their state of equilibrium, one can imagine that it may also be 
able to change intumescences of considerably differing shape into solitary waves. 

Among several intumescences of like energy, those whose profiles deviate the 
most from that of a solitary wave, and which as a result differ most in appearance 
from one moment to the next, have, as has been shown, the largest moments of 
instability: these moments therefore well deserve the name that I have given them, 
since they indicate in some manner, by their relative magnitude, the speed and 
amplitude of the transformations that each wave undergoes. 

The production of a stable form is impossible in the two cases of a negative wave 
and a continuous intumescence, and also in the case of a positive intumescence of 
too short a nature, which could not change into a unique solitary wave without 
acquiring an excessive height and consequently becoming unstable. I n  these three 
cases, the theory permits one, not only to  obtain experimental formulas for the 
speeds of propagation, but moreover to explain the different circumstances which 
produce them. . . . 
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